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8.1 Introduction

Principal component analysis (PCA) and factor analysis (also called principal factor analysis 
or principal axis factoring) are two methods for identifying structure within a set of vari-
ables. Many analyses involve large numbers of variables that are difficult to interpret. Using 
PCA or factor analysis helps find interrelationships between variables (usually called items) 
to identify a smaller number of unifying variables called factors. Consider the example of a 
soccer club whose management wants to measure the satisfaction of the fans. The manage-
ment could, for instance, measure fan satisfaction by asking how satisfied the fans are with 
the (1) assortment of merchandise, (2) quality of merchandise, and (3) prices of merchan-
dise. It is likely that these three items together measure satisfaction with the merchandise. 
Through the application of PCA or factor analysis, we can determine whether a single factor 
represents the three satisfaction items well. Practically, PCA and factor analysis are applied 
to understand much larger sets of variables, tens or even hundreds, when just reading the 
variables’ descriptions does not determine an obvious or immediate number of factors.

PCA and factor analysis both explain patterns of correlations within a set of observed 
variables. That is, they identify sets of highly correlated variables and infer an underlying 
factor structure. While PCA and factor analysis are very similar in the way they arrive at a 
solution, they differ fundamentally in their assumptions of the variables’ nature and their 
treatment in the analysis. Due to these differences, the methods follow different research 
objectives, which dictate their areas of application. While the PCA’s objective is to reproduce 

Learning Objectives
After reading this chapter, you should understand:
 5 The basics of principal component and factor analysis.
 5 The principles of exploratory and confirmatory factor analysis.
 5 Key terms, such as communality, eigenvalues, factor loadings, and factor scores.
 5 What factor rotation is.
 5 How to determine whether data are suitable for carrying out an exploratory factor 
analysis.
 5 How to interpret SPSS principal component analysis output.
 5 The principles of reliability analysis and its execution in SPSS.
 5 The concept of structural equation modeling.
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a data structure, as well as possible only using a few factors, factor analysis aims to explain 
the variables’ correlations using factors (e.g., Hair et al. 2010; Matsunaga 2010; Mulaik 
2009).1 We will discuss these differences and their implications in this chapter.

Both PCA and factor analysis can be used for exploratory or confirmatory purposes. 
What are exploratory and confirmatory factor analyses? Comparing the left and right panels 
of .  Fig 8.1 shows us the difference. Exploratory factor analysis, often simply referred to as 
EFA, does not rely on previous ideas on the factor structure we may find. That is, there may 
be relationships (indicated by the arrows) between each factor (indicated by ovals) and each 
item. While some of these relationships may be weak (indicated by the dotted arrows), others 
are more pronounced, suggesting that these items represent an underlying factor well. The 
left panel of  . Fig. 8.1 illustrates this point. Thus, an exploratory factor analysis reveals the 
number of factors and the items belonging to a specific factor. In a confirmatory factor anal-
ysis, usually simply referred to as CFA, there may only be relationships between a factor and 
specific items. In the right panel of  . Fig. 8.1, the first three items relate to factor 1, whereas 
the last two items relate to factor 2. Different from the exploratory factor analysis, in a con-
firmatory factor analysis, we have clear expectations of the factor structure (e.g., because 
researchers have proposed a scale that we want to adapt for our study) and we want to test 
for the expected structure.

In this chapter, we primarily deal with exploratory factor analysis, as it conveys the 
principles that underlie all factor analytic procedures and because the two techniques are 
(almost) identical from a statistical point of view. Nevertheless, we will also discuss an 
important aspect of confirmatory factor analysis, namely reliability analysis, which tests 
the consistency of a measurement scale (see 7 Chap. 3). We will also briefly introduce a 
specific confirmatory factor analysis approach called structural equation modeling (often 
simply referred to as SEM). Structural equation modeling differs statistically and practi-
cally from PCA and factor analysis. It is not only used to evaluate how well observed vari-
ables relate to factors but also to analyze hypothesized relationships between factors that 
the researcher specifies prior to the analysis based on theory and logic.

1 Other methods for carrying out factor analyses include, for example, unweighted least squares, gen-
eralized least squares, or maximum likelihood but these are statistically complex.

Satisfaction with the
condition of the

stadium (x1)

Satisfaction with the
outer appearance of the

stadium (x2) 

Satisfaction with the
interior design of the

stadium (x3) 

Satisfaction with
the stadium

(factor 1) 

Assortment of 
merchandise (x4) 

Quality of 
merchandise (x5) 

Satisfaction with
the merchandise

(factor 2) 

Satisfaction with the
condition of the

stadium (x1)

Satisfaction with the
outer appearance of the

stadium (x2)

Satisfaction with the
interior design of the

stadium (x3)

Satisfaction with
the stadium

(factor 1) 

Assortment of 
merchandise (x4)

Quality of 
merchandise (x5)

Satisfaction with
the merchandise

(factor 2) 

. Fig. 8.1 Exploratory factor analysis (left) and confirmatory factor analysis (right)
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8.2 Understanding Principal Component and Factor Analysis

8.2.1 Why Use Principal Component and Factor Analysis?

Researchers often face the problem of large questionnaires comprising many items. For 
example, in a survey of a major German soccer club, the management was particularly inter-
ested in identifying and evaluating performance features that relate to soccer fans’ satisfaction 
(Sarstedt et al. 2014). Examples of relevant features include the stadium, the team composi-
tion and their success, the trainer, and the management. The club therefore commissioned a 
questionnaire comprising 99 previously identified items by means of literature databases and 
focus groups of fans. All the items were measured on scales ranging from 1 (“very dissatisfied”) 
to 7 (“very satisfied”). . Table 8.1 shows an overview of some items considered in the study.

. Table 8.1 Items in the soccer fan satisfaction study

Satisfaction with …

Condition of the stadium Public appearances of the players

Interior design of the stadium Number of stars in the team

Outer appearance of the stadium Interaction of players with fans

Signposting outside the stadium Volume of the loudspeakers in the stadium

Signposting inside the stadium Choice of music in the stadium

Roofing inside the stadium Entertainment program in the stadium

Comfort of the seats Stadium speaker

Video score boards in the stadium Newsmagazine of the stadium

Condition of the restrooms Price of annual season ticket

Tidiness within the stadium Entry fees

Size of the stadium Offers of reduced tickets

View onto the playing field Design of the home jersey

Number of restrooms Design of the away jersey

Sponsors’ advertisements in the stadium Assortment of merchandise

Location of the stadium Quality of merchandise

Name of the stadium Prices of merchandise

Determination and commitment of the players Pre-sale of tickets

Current success regarding matches Online-shop

Identification of the players with the club Opening times of the fan-shops

Quality of the team composition Accessibility of the fan-shops

Presence of a player with whom fans can identify Behavior of the sales persons in the fan shops
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As you can imagine, tackling such a large set of items is problematic, because it pro-
vides quite complex data. Given the task of identifying and evaluating performance fea-
tures that relate to soccer fans’ satisfaction (measured by “Overall, how satisfied are you 
with your soccer club”), we cannot simply compare the items on a pairwise basis. It is far 
more reasonable to consider the factor structure first. For example, satisfaction with the 
condition of the stadium (x1), outer appearance of the stadium (x2), and interior design 
of the stadium (x3) cover similar aspects that relate to the respondents’ satisfaction with 
the stadium. If a soccer fan is generally very satisfied with the stadium, he/she will most 
likely answer all three items positively. Conversely, if a respondent is generally dissatis-
fied with the stadium, he/she is most likely to be rather dissatisfied with all the perfor-
mance aspects of the stadium, such as the outer appearance and interior design. Conse-
quently, these three items are likely to be highly correlated—they cover related aspects 
of the respondents’ overall satisfaction with the stadium. More precisely, these items can 
be interpreted as manifestations of the factor capturing the “joint meaning” of the items 
related to it. The arrows pointing from the factor to the items in . Fig. 8.1 indicate this point. 
In our example, the “joint meaning” of the three items could be described as satisfaction 
with the stadium, since the items represent somewhat different, yet related, aspects of the 
stadium. Likewise, there is a second factor that relates to the two items x4 and x5, which, 
like the first factor, shares a common meaning, namely satisfaction with the merchandise.

PCA and factor analysis are two statistical procedures that draw on item correlations 
in order to find a small number of factors. Having conducted the analysis, we can make 
use of few (uncorrelated) factors instead of many variables, thus significantly reducing the 
analysis’s complexity. For example, if we find six factors, we only need to consider six cor-
relations between the factors and overall satisfaction, which means that the recommen-
dations will rely on six factors.

8.2.2 Analysis Steps

Like any multivariate analysis method, PCA and factor analysis are subject to certain 
requirements, which need to be met for the analysis to be meaningful. A crucial require-
ment is that the variables need to exhibit a certain degree of correlation. In our example in 
. Fig. 8.1, this is probably the case, as we expect increased correlations between x1, x2, and 
x3, on the one hand, and between x4 and x5 on the other. Other items, such as x1 and x4, are 
probably somewhat correlated, but to a lesser degree than the group of items x1, x2, and x3 
and the pair x4 and x5. Several methods allow for testing whether the item correlations are 
sufficiently high.

Both PCA and factor analysis strive to reduce the overall item set to a smaller set of 
factors. More precisely, PCA extracts factors such that they account for variables’ vari-
ance, whereas factor analysis attempts to explain the correlations between the variables. 
Whichever approach you apply, using only a few factors instead of many items reduces its 
precision, because the factors cannot represent all the information included in the items. 
Consequently, there is a trade-off between simplicity and accuracy. In order to make the 
analysis as simple as possible, we want to extract only a few factors. At the same time, we 
do not want to lose too much information by having too few factors. This trade-off has to 
be addressed in any PCA and factor analysis when deciding how many factors to extract 
from the data.

8
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Once the number of factors to retain from the data has been identified, we can proceed 
with the interpretation of the factor solution. This step requires us to produce a label for each 
factor that best characterizes the joint meaning of all the variables associated with it. This step 
is often challenging, but there are ways of facilitating the interpretation of the factor solution. 
Finally, we have to assess how well the factors reproduce the data. This is done by examining 
the solution’s goodness-of-fit, which completes the standard analysis. However, if we wish to 
continue using the results in further analyses, we need to calculate the factor scores. Factor 
scores are linear combinations of the items and can be used as variables in follow-up analyses.

. Figure 8.2 illustrates the steps involved in the analysis; we will discuss these in more 
detail in the following sections. In doing so, our theoretical descriptions and illustrations 
will focus on the PCA, as this method is easier to grasp. However, most of our descriptions 
also apply to factor analysis.

8.3 Principal Component Analysis

8.3.1 Check Requirements and Conduct Preliminary Analyses

Before carrying out a PCA, we have to consider several requirements, which we can test 
by answering the following questions:
 4 Are the measurement scales appropriate?
 4 Is the sample size sufficiently large?
 4 Are the observations independent?
 4 Are the variables sufficiently correlated?

Check requirements and conduct preliminary analyses 

Extract the factors 

Determine the number of factors 

Interpret the factor solution 

Evaluate the goodness-of-fit of the factor solution 

Compute the factor scores (optional) 

. Fig. 8.2 Steps involved in a PCA
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z Are the measurement scales appropriate?
For a PCA, it is best to have data measured on an interval or ratio scale. In practical appli-
cations, items measured on an ordinal scale level have become common. Ordinal scales 
can be used if:
 4 the scale points are equidistant, which means that the difference in the wording 

between scale steps is the same (see 7 Chap. 3), and
 4 there are five or more response categories.

z Is the sample size sufficiently large?
Another point of concern is the sample size. As a rule of thumb, the number of (valid) 
observations should be at least ten times the number of items used for analysis. This only 
provides a rough indication of the necessary sample size. Fortunately, researchers have 
conducted studies to determine minimum sample size requirements, which depend on 
other aspects of the study. MacCallum et al. (1999) suggest the following:
 4 When all communalities (we will discuss this term in 7 Sect. 8.3.2.4) are above 0.60, 

small sample sizes of below 100 are adequate.
 4 With communalities around 0.50, sample sizes between 100 and 200 are sufficient.
 4 When communalities are consistently low, with many or all under 0.50, a sample size 

between 100 and 200 is adequate if the number of factors is small and each of these is 
measured with six or more items.
 4 When communalities are consistently low and the factors numbers are high or are 

measured with only few items (i.e., 3 or less), 300 observations are recommended.

z Are the observations independent?
We have to ensure that the observations are independent. This means that the observations 
need to be completely unrelated (see 7 Chap. 3). If we use dependent observations, we would 
introduce “artificial” correlations, which are not due to an underlying factor structure, 
but simply to the same respondents having answered the same questions multiple times.

z Are the variables sufficiently correlated?
As indicated before, PCA is based on correlations between items. Consequently, conduct-
ing a PCA only makes sense if the items correlate sufficiently. The problem is deciding what 
“sufficient” actually means.

An obvious step is to examine the correlation matrix (7 Chap. 5). Naturally, we want 
the correlations between different items to be as high as possible, but they will not always 
be. In our previous example, we expect high correlations between x1, x2, and x3, on the 
one hand, and x4 and x5 on the other. Conversely, we might expect lower correlations 
between, for example, x1 and x4 and between x3 and x5. Thus, not all of the correlation 
matrix’s elements need to have high values. The PCA depends on the relative size of the 
correlations. Therefore, if single correlations are very low, this is not necessarily problem-
atic! Only when all the correlations are around zero, PCA is no longer useful. In addition, 
the statistical significance of each correlation coefficient helps decide whether it differs 
significantly from zero.

There are additional measures to determine whether the items correlate sufficiently. 
One is the anti-image. The anti-image describes the portion of an item’s variance that is 
independent of another item in the analysis. Obviously, we want all items to be highly 
correlated, so that the anti-images of an item set are as small as possible. Initially, we do 

8
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not interpret the anti-image values directly, but use a measure based on the anti-image 
concept: The Kaiser–Meyer–Olkin (KMO) criterion. The KMO criterion, also called the 
measure of sampling adequacy (MSA), indicates whether the other variables in the dataset 
can explain the correlations between variables. Kaiser (1974), who introduced the sta-
tistic, recommends a set of nicely labeled threshold values for KMO and MSA, which 
. Table 8.2 presents.

The Bartlett’s test of sphericity can be used to test the null hypothesis that the correla-
tion matrix is a diagonal matrix (i.e., all non-diagonal elements are zero) in the population. 
Since we need high correlations for PCA, we want to reject the null hypothesis. A large test 
statistic value and corresponding a small p-value will favor the rejection of the hypoth-
esis. In practical applications, it is virtually impossible not to reject this null hypothesis, 
as typically there are some correlations, particularly in larger sets of items. In addition, 
PCA is typically used with large samples, a situation, which favors the rejection of the null 
hypothesis. Thus, Bartlett’s test is of rather limited value for assessing whether the vari-
ables are sufficiently correlated.

To summarize, the correlation matrix with the associated significance levels provides a 
first insight into the correlation structures. However, the final decision of whether the data 
are appropriate for PCA should be primarily based on the KMO statistic. If this measure 
indicates sufficiently correlated variables, we can continue the analysis of the results. If 
not, we should try to identify items that correlate only weakly with the remaining items 
and remove them. In Box 8.1, we discuss how to do this.

. Table 8.2 Threshold values for KMO and MSA

KMO/MSA value Adequacy of the correlations

Below 0.50 Unacceptable

0.50–0.59 Miserable

0.60–0.69 Mediocre

0.70–0.79 Middling

0.80–0.89 Meritorious

0.90 and higher Marvelous

Box 8.1 Identifying problematic items
Examining the correlation matrix and the significance levels of correlations allows identifying 
items that correlate only weakly with the remaining items. An even better approach is examining 
the variable-specific MSA values, which are interpreted like the overall KMO statistic (see  
. Table 8.2). In fact, the KMO statistic is simply the overall mean of all variable-specific MSA 
values. Consequently, all the MSA values should also lie above the threshold level of 0.50. If 
this is not the case, consider removing this item from the analysis. An item’s communality (see 
7 Sect. 8.3.2.4) can also serve as a useful indicator of how well the factors extracted represent 
an item. However, communalities are mostly considered when evaluating the solution’s 
goodness-of-fit.
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8.3.2 Extract the Factors

8.3.2.1 Principal Component Analysis vs. Factor Analysis
Factor analysis assumes that each variable’s variance can be divided into common vari-
ance (i.e., variance shared with all the other variables in the analysis) and unique variance  
(. Fig. 8.3), the latter of which can be further broken down into specific variance (i.e., 
variance associated with only one specific variable) and error variance (i.e., variance 
due to measurement error). The method, however, can only reproduce common vari-
ance. Thereby factor analysis explicitly recognizes the presence of error. Conversely, PCA 
assumes that all variance is common variance, which factor extraction can fully explain 
(e.g., Preacher and MacCallum 2003). These differences entail different interpretations of 
the analysis’s outcomes. PCA asks:

» Which umbrella term can we use to summarize a set of variables that loads highly on a 
specific factor?

Conversely, factor analysis asks:

» What is the common reason for the strong correlations between a set of variables?

From a theoretical perspective, the assumption that there is a unique variance for which the 
factors cannot fully account, is generally more realistic, but simultaneously more restric-
tive. Although theoretically sound, this restriction can sometimes lead to complications 
in the analysis, which have contributed to the widespread use of PCA, especially in market 
research practice.

Researchers usually suggest using PCA when data reduction is the primary concern; 
that is, when the focus is to extract a minimum number of factors that account for a 
maximum proportion of the variables’ total variance. In contrast, if the primary concern 
is to identify latent dimensions represented in the variables, factor analysis should be 
applied. However, prior research has shown that both approaches arrive at essentially the 
same result when

Common variance /
communality

Common variance /
communality

Unique 
variance 

Principal component analysis Factor analysis 

Variance extracted 
Variance excluded 

. Fig. 8.3 Principal component analysis vs. factor analysis

8
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 4 more than 30 variables are used, or
 4 most of the variables’ communalities exceed 0.60.

With 20 or fewer variables and communalities below 0.40—which are clearly undesirable 
in empirical research—the differences are probably pronounced (Stevens 2009).

Apart from these conceptual differences in the variables’ nature, PCA and factor 
 analysis differ in the aim of their analysis. Whereas the goal of factor analysis is to explain 
the correlations between the variables, PCA focuses on explaining the variables’ variances. 
That is, the PCA’s objective is to determine the linear combinations of the variables that 
retain as much information from the original variables as possible. Strictly speaking, PCA 
does not extract factors, but components, which are labeled as such in SPSS.

Despite these differences, which have very little relevance in many common research 
settings in practice, PCA and factor analysis have many points in common. For example, 
the methods follow very similar ways to arrive at a solution and their interpretations of 
statistical measures, such as KMO, eigenvalues, or factor loadings, are (almost) identical. 
In fact, SPSS blends these two procedures when running a PCA as the program initially 
applies a factor analysis but rescales the estimates such that they conform to a PCA. That 
way, the analysis assumes that the entire variance is common but produces (rotated) load-
ings (we will discuss factor rotation in 7 Sect. 8.3.4.1), which facilitate the interpretation 
of the factors.

Despite the small differences of PCA and factor analysis in most research settings, 
researchers have strong feelings about the choice of PCA or factor analysis. Cliff (1987, p. 
349) summarizes this issue well, by noting that proponents of factor analysis “insist that 
components analysis is at best a common factor analysis with some error added and at 
worst an unrecognizable hodgepodge of things from which nothing can be determined.” 
For further discussions on this topic, see also Velicer and Jackson (1990) and Widaman 
(1993).2

8.3.2.2 How Does Factor Extraction Work?
When extracting factors, PCA’s objective is to reproduce a data structure with only a 
few factors. PCA does this by generating a new set of factors as linear composites of the 
original variables, which reproduces the original variables’ variance as best as possi-
ble. These linear composites are called principal components, but, for simplicity’s sake, 
we refer to them as factors. More precisely, PCA computes eigenvectors. These eigen-
vectors include so called factor weights, which extract the maximum possible variance 
of all the variables, with successive factoring continuing until a significant share of the 
variance is explained.

Operationally, the first factor is extracted in such a way that it maximizes the vari-
ance accounted for in the variables. We can visualize this easily by examining the vector 
space illustrated in . Fig. 8.4. In this example, we have five variables (x1−x5) represented 

2 Related discussions have been raised in structural equation modeling, where researchers have 
heatedly discussed the strengths and limitations of factor-based and component-based approaches 
(e.g. Sarstedt et al. 2016a; Hair et al. 2017b).
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by five vectors starting at the zero point, with each vector’s length standardized to one. 
To maximize the variance accounted for, the first factor F1 is fitted into this vector space 
in such a way that the sum of all the angles between this factor and the five variables in 
the vector space is minimized. We do this to interpret the angle between two vectors 
as correlations. For example, if the factor’s vector and a variable’s vector are congruent, 
the angle between these two is zero, indicating that the factor and the variable correlate 
perfectly. On the other hand, if the factor and the variable are uncorrelated, the angle 
between these two is 90°. This correlation between a (unit-scaled) factor and a vari-
able is called the factor loading. Note that factor weights and factor loadings essentially 
express the same thing—the relationships between variables and factors—but they are 
based on different scales.

After extracting F1, a second factor (F2) is extracted, which maximizes the remain-
ing variance accounted for. The second factor is fitted at a 90° angle into the vector space 
(. Fig. 8.4) and is therefore uncorrelated with the first factor.4 If we extract a third factor, 
it will explain the maximum amount of variance for which factors 1 and 2 have hitherto 
not accounted. This factor will also be fitted at a 90° angle to the first two factors, making it 
independent from the first two factors (we don’t illustrate this third factor in . Fig. 8.4, as 
this is a three-dimensional space). The fact that the factors are uncorrelated is an import-
ant feature, as we can use them to replace many highly correlated variables in follow-up 
analyses. For example, using uncorrelated factors as independent variables in a regression 
analysis helps solve potential collinearity issues (7 Chap. 7).

F1

F2

x1x2

x3

x4 x5

90°

. Fig. 8.4 Factor extraction3

4 Note that this changes when oblique rotation is used. We will discuss factor rotation later in this 
chapter.

3 Note that . Fig. 8.3 describes a special case, as the five variables are scaled down into a two-dimen-
sional space. In this set-up, it would be possible for the two factors to explain all five items. However, 
in real-life, the five items span a five-dimensional vector space.

8
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An important PCA feature is that it works with standardized variables (see 7 Chap. 5 for 
an explanation of what standardized variables are). Standardizing variables has import-
ant implications for our analysis in two respects. First, we can assess each factor’s eigen-
value, which indicates how much a specific factor extracts all of the variables’ variance  
(see 7 Sect. 8.3.2.3). Second, the standardization of variables allows for assessing each 
variable’s communality, which describes how much the factors extracted capture or repro-
duce each variable’s variance (see 7 Sect. 8.3.2.4).

8.3.2.3 What Are Eigenvalues?
To understand the concept of eigenvalues, think of the soccer fan satisfaction study 
(. Fig. 8.1). In this example, there are five variables. As all the variables are standardized 
prior to the analysis, each has a variance of 1. In a simplified way, we could say that the 
overall information (i.e., variance) that we want to reproduce through factor extraction is 
5 units. Let’s assume that we extract the two factors presented above.

The first factor’s eigenvalue indicates how much of the total variance the factor accounts 
for. Each variable has a variance of 1, which means the number of variables is the total vari-
ance (i.e., 5 variables = 5 units of variance). If a factor has an eigenvalue of, let’s say 2.10, it 
covers the information of 2.10 variables or, put differently, accounts for 2.10/5.00 = 42 % 
of the overall variance (. Fig. 8.5).

Extracting a second factor will allow us to explain another part of the remaining vari-
ance (i.e., 5.00 − 2.10 = 2.90 units, . Fig. 8.5). However, the eigenvalue of the second 
factor will always be smaller than that of the first factor. Assume that the second factor 
has an eigenvalue of 1.30 units. The second factor then accounts for 1.30/5.00 = 26 % of 
the overall variance. Together, these two factors explain (2.10 + 1.30)/5.00 = 68 % of the 

The Explained Visually webpage offers an excellent illustration of two- and three-dimensional 
factor extraction.

© intheskies/stock.adobe.com
http://setosa.io/ev/principal-component-analysis/

http://setosa.io/ev/principal-component-analysis/
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overall variance. Every additional factor extracted increases the variance accounted for 
until we have extracted as many factors as there are variables. In this case, the factors 
account for 100 % of the overall variance, which means that the factors reproduce the 
complete variance.

0.30 

2.10 

1.30 

0.80 

0.50 

2.10 

1.30 

5.00 

Total variance Total variance 
reproduced by 

five factors 

Variance 
reproduced by 

two factors 

%
 o

f v
ar

ia
nc

e 

100% 100% 

68% 

. Fig. 8.5 Total variance explained by variables and factors

For readers interested in the statistical principles, the Explained Visually webpage illustrates the 
concepts of eigenvalues and eigenvectors.

© Alexander Vasilyev/stock.adobe.com
http://setosa.io/ev/eigenvectors-and-eigenvalues/
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Following the PCA approach, we assume that factor extraction can reproduce each vari-
able’s entire variance. In other words, we assume that each variable’s variance is common; 
that is, the variance is shared with other variables. This differs in factor analysis, in which 
each variable can also have a unique variance.

8.3.2.4 What Is Communality?
Whereas the eigenvalue tells us how much variance each factor accounts for, the commu-
nality indicates how much variance of each variable factor extraction can reproduce. There 
is no commonly agreed threshold for a variable’s communality, as this depends strongly 
on the complexity of the analysis at hand. However, generally, the extracted factors should 
account for at least 50 % of a variable’s variance. Thus, the communalities should be above 
0.50. Every additional factor extracted will increase the explained variance, and if we 
extract as many factors as there are variables (in our example five), each variable’s commu-
nality would be 1.00. The factors extracted would then fully explain each variable; that is, 
the first factor will explain a certain amount of each variable’s variance, the second factor 
another part, and so on.

However, since our overall objective is to reduce the number of variables through factor 
extraction, we should extract only a few factors that account for a high degree of overall 
variance. This raises the question of how to decide on the number of factors to extract from 
the data, which we discuss in the following section.

8.3.3 Determine the Number of Factors

Determining the number of factors to extract from the data is a crucial and challenging 
step in any PCA. Several approaches offer guidance in this respect, but most researchers 
do not pick just one method, but use multiple ones. If different methods suggest the same 
number of factors, this leads to greater confidence in the results.

8.3.3.1 The Kaiser Criterion
An intuitive way to decide on the number of factors is to extract all the factors with an 
eigenvalue greater than 1. The reason for this is that each factor with an eigenvalue greater 
than 1 accounts for more variance than a single variable (remember, we are looking at stan-
dardized variables, which is why each variable’s variance is exactly 1). As the objective of 
PCA is to reduce the overall number of variables, each factor should of course account 
for more variance than a single variable can. If this occurs, then this factor is useful for 
reducing the set of variables. Extracting all the factors with an eigenvalue greater than 1 
is frequently called the Kaiser criterion or latent root criterion and is commonly used to 
determine the number of factors. However, the Kaiser criterion is well known for over-
specifying the number of factors; that is, the criterion suggests more factors than it should 
(e.g., Russell 2002; Zwick and Velicer 1986).

8.3.3.2 The Scree Plot
Another popular way to decide on the number of factors to extract is to plot each factor’s 
eigenvalue (y-axis) against the factor with which it is associated (x-axis). This results 
in a scree plot, which typically has a distinct break in it, thereby showing the “correct” 
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number of factors (Cattell 1966). This distinct break is called the “elbow.” Researchers 
typically recommend retaining all factors above this break, as they contribute most to 
the explanation of the variance in the dataset. Thus, we select one factor less than indi-
cated by the elbow.

8.3.3.3 Parallel Analysis
A large body of review papers and simulation studies has produced a prescriptive con-
sensus that Horn’s (1965) parallel analysis is the best method for deciding how many 
factors to extract (e.g., Dinno 2009; Hayton et al. 2004; Henson and Roberts 2006; 
Matsunga 2010; Zwick and Velicer 1986). The rationale underlying parallel analysis is 
that factors from real data with a valid underlying factor structure should have larger 
eigenvalues than those derived from randomly generated data (actually pseudorandom 
deviates) with the same sample size and number of variables. Parallel analysis involves 
several steps. First, a large number of datasets are randomly generated that have the 
same number of observations and variables as the original dataset. Parallel PCAs are 
then run on each of the datasets (hence, parallel analysis), resulting in many slightly 
different sets of randomly generated eigenvalues. We then compare the randomly gen-
erated eigenvalues with those from the original analysis. Only factors whose original 
eigenvalues are larger than the 95th percentile of the eigenvalues should be retained 
(Longman et al. 1989).

8.3.3.4 Expectations
When, for example, replicating a previous market research study, we might have a priori 
information on the number of factors we want to find. For example, if a previous study 
suggests that a certain item set comprises five factors, we should extract the same number 
of factors, even if statistical criteria, such as the scree plot, suggest a different number. 
Similarly, theory might suggest that a certain number of factors should be extracted from 
the data.

Strictly speaking, these are confirmatory approaches to PCA, which blur the distinc-
tion between these two factor analysis types. Ultimately however, we should not only rely 
on the data, but keep in mind that the research results should be interpretable and action-
able for market research practice. Once we have decided on the number of factors to retain 
from the data, we can start interpreting the factor solution.

>  Whatever combination of approaches we use to determine the number of factors, 
the factors extracted should account for at least 50 % of the total variance 
explained (75 % or more is recommended). 

8.3.4 Interpret the Factor Solution

8.3.4.1 Rotate the Factors
To interpret the solution, we have to determine which variables relate to each of the factors 
extracted. We do this by examining the factor loadings, which represent the correlations 
between the factors and the variables and can take values ranging from −1 to +1. A high 

8
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factor loading indicates that a certain factor represents a variable well. Subsequently, we 
look for high absolute values, because the correlation between a variable and a factor 
can also be negative. Using the highest absolute factor loadings, we “assign” each vari-
able to a certain factor and then produce a label for each factor that best characterizes 
the joint meaning of all the variables associated with it. This labeling is subjective, but 
a key PCA step. An example of a label is the respondents’ satisfaction with the stadium, 
which  represents the items referring to its condition, outer appearance, and interior design 
(. Fig. 8.1).

We can make use of factor rotation to facilitate the factors’ interpretation. We do not 
have to rotate the factor solution, but it will facilitate interpreting the findings, partic-
ularly if we have a reasonably large number of items (say six or more). To understand 
what factor rotation is all about, once again consider the factor structure described in 
. Fig. 8.4. Here, we see that both factors relate to the variables in the set. However, the 
first factor appears to generally correlate more strongly with the variables, whereas the 
second factor only correlates weakly with the variables (to clarify, we look for small 
angles between the factors and variables). This implies that we “assign” all variables 
to the first factor without taking the second into consideration. This does not appear 
to be very meaningful, as we want both factors to represent certain facets of the vari-
able set. Factor rotation can resolve this problem. By rotating the factor axes, we can 
create a situation in which a set of variables loads highly on only one specific factor, 
whereas another set loads highly on another. . Figure 8.6 illustrates the factor rota-
tion graphically.

On the left side of the figure, we see that both factors are orthogonally rotated 49°, 
meaning that a 90° angle is maintained between the factors during the rotation procedure. 
Consequently, the factors remain uncorrelated, which is in line with the PCA’s initial objec-
tive. By rotating the first factor from F1 to F1′, it is now strongly related to variables x1, x2, 
and x3, but weakly related to x4 and x5. Conversely, by rotating the second factor from F2 
to F2′, it is now strongly related to x4 and x5, but weakly related to the remaining variables. 
The assignment of the variables is now much clearer, which facilitates the interpretation 
of the factors significantly.

Various orthogonal rotation methods exist, all of which differ with regard to their treat-
ment of the loading structure. The varimax rotation is the best-known and this procedure 
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. Fig. 8.6 Orthogonal and oblique factor rotation
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aims at maximizing the dispersion of loadings within factors, which means a few vari-
ables will have high loadings, while the remaining variables’ loadings will be considerably 
smaller (Kaiser 1958)

Alternatively, we can choose between several oblique rotation techniques. In oblique 
rotation, the 90° angle between the factors is not maintained during rotation, and the 
resulting factors are therefore correlated. . Figure 8.6 (right side) illustrates an example 
of an oblique factor rotation. Promax rotation is a commonly used oblique rotation tech-
nique. The promax rotation allows for setting an exponent (referred to as kappa) that 
needs to be greater than 1. Higher values make the loadings even more extreme (i.e., 
high loadings are amplified and weak loadings are reduced even further), which is at 
the cost of stronger correlations between the factors and less total variance explained 
(Hamilton 2013). A kappa value of 3 works well for most applications. Direct oblimin 
rotation is a popular alternative oblique rotation type, which allows specifying the 
maximum degree of obliqueness. This degree is the delta, which determines the level 
of the correlation allowed between the factors. A delta of zero (the default) ensures 
that the factors are—if at all—only moderately correlated, which is acceptable for most 
analyses. Oblique rotation is used when factors are possibly related. It is, for example, 
very likely that the respondents’ satisfaction with the stadium is related to their satis-
faction with other aspects of the soccer club, such as the number of stars in the team or 
the quality of the merchandise. However, relinquishing the initial objective of extract-
ing uncorrelated factors can diminish the factors’ interpretability. We therefore recom-
mend using the varimax rotation to enhance the interpretability of the results. Only if 
the results are difficult to interpret, an oblique rotation should be applied. Among the 
oblique rotation methods, researchers generally recommend the promax (Gorsuch 
1983) or oblimin (Kim and Mueller 1978) methods but differences between the rota-
tion types are typically marginal (Brown 2009).

8.3.4.2 Assign the Variables to the Factors
After rotating the factors, we need to interpret them and give each factor a name, which 
has some descriptive value. Interpreting factors involves assigning each variable to a 
specific factor based on the highest absolute (!) loading. For example, if a variable has 
a 0.60 loading with the first factor and a 0.20 loading with the second, we would assign 
this variable to the first factor. Loadings may nevertheless be very similar (e.g., 0.50 for 
the first factor and 0.55 for the second one), making the assignment ambiguous. In such 
a situation, we could assign the variable to another factor, even though it does not have 
the highest loading on this specific factor. While this step can help increase the results’ 
face validity (see 7 Chap. 3), we should make sure that the variable’s factor loading with 
the designated factor is above an acceptable level. If very few factors have been extracted, 
the loading should be at least 0.50, but with a high number of factors, lower loadings 
of above 0.30 are acceptable. Alternatively, some simply ignore a certain variable if it 
does not fit with the factor structure. In such a situation, we should re-run the analy-
sis without variables that do not load highly on a specific factor. In the end, the results 
should be interpretable and actionable, but keep in mind that this technique is, first and 
foremost, exploratory!

8



8275
8.3 · Principal Component Analysis

8.3.5 Evaluate the Goodness-of-Fit of the Factor Solution

8.3.5.1  Check the Congruence of the Initial and Reproduced 
Correlations

While PCA focuses on explaining the variables’ variances, checking how well the method 
approximates the correlation matrix allows for assessing the quality of the solution (i.e., 
the goodness-of-fit) (Graffelman 2013). More precisely, to assess the solution’s goodness-
of-fit, we can make use of the differences between the correlations in the data and those 
that the factors imply. These differences are also called correlation residuals and should 
be as small as possible.

In practice, we check the proportion of correlation residuals with an absolute value 
higher than 0.05. Even though there is no strict rule of thumb regarding the maximum 
proportion, a proportion of more than 50 % should raise concern. However, high residuals 
usually go hand in hand with an unsatisfactory KMO measure; consequently, this problem 
already surfaces when testing the assumptions.

8.3.5.2  Check How Much of Each Variable’s Variance Is Reproduced 
by Means of Factor Extraction

Another way to check the solution’s goodness-of-fit is by evaluating how much of each 
variable’s variance the factors reproduce (i.e., the communality). If several communal-
ities exhibit low values, we should consider removing these variables. Considering the 
variable-specific MSA measures could help us make this decision (see Box 8.1). If there 
are more variables in the dataset, communalities usually become smaller; however, if the 
factor solution accounts for less than 50 % of a variable’s variance (i.e., the variable’s com-
munality is less than 0.50), it is worthwhile reconsidering the set-up.

8.3.6 Compute the Factor Scores

After the rotation and interpretation of the factors, we can compute the factor scores, 
another element of the analysis. Factor scores are linear combinations of the items and can 
be used as separate variables in subsequent analyses. For example, instead of using many 
highly correlated independent variables in a regression analysis, we can use few uncor-
related factors to overcome collinearity problems.

The simplest ways to compute factor scores for each observation is to sum all the scores 
of the items assigned to a factor. While easy to compute, this approach neglects the poten-
tial differences in each item’s contribution to each factor (Sarstedt et al. 2016).

Drawing on the item weights produced by the PCA is a more elaborate way of com-
puting factor scores (Hershberger 2005). These weights indicate each item’s relative con-
tribution to forming the factor; we simply multiply the standardized variables’ values 
with the weights to get the factor scores. Factor scores computed on the basis of item 
weights have a zero mean. This means that if a respondent has a value greater than zero 
for a certain factor, he/she scores above the average in terms of the characteristic that this 
factor describes. Conversely, if a factor score is below zero, then this respondent exhibits 
the characteristic below average.
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Different from the PCA, a factor analysis does not produce determinate factor scores. 
In other words, the factor is indeterminate, which means that part of it remains an arbi-
trary quantity, capable of taking on an infinite range of values (e.g., Grice 2001; Steiger 
1979). Thus, we have to rely on other approaches to compute factor scores. The use of these 
approaches is, however, not restricted to factor analysis but extends to PCA, because of the 
specific way SPSS (and other programs) have implemented the method. The most promi-
nent of these approaches is the regression method. This method takes into account (1) the 
correlation between the factors and variables (via the variable loadings), (2) the correla-
tion between the variables, and (3) the correlation between the factors if oblique rotation 
has been used (DiStefano et al. 2009). The regression method z-standardizes each factor to 
zero mean and unit standard deviation.5 We can therefore interpret an observation’s score 
in relation to the mean and in terms of the units of standard deviation from this mean. For 
example, an observation’s factor score of 0.79 implies that this observation is 0.79 standard 
deviations above the average with regard to the corresponding factor.

Another popular approach is the Bartlett method, which is similar to the regression 
method. In SPSS, the method produces factor scores with zero mean and standard devia-
tions larger than one. Owing to the way they are estimated, the factor scores that the Bartlett 
method produces are considered more accurate (Hershberger 2005). However, in practical 
applications, both methods produce very similar results. Because of the z-standardization 
of the scores, which facilitates the comparison of scores across factors, we recommend 
using the regression method.

In . Table 8.3 we summarize the main steps that need to be taken when conducting a 
PCA or factor analysis in SPSS.

8.4 Confirmatory Factor Analysis and Reliability Analysis

Many researchers and practitioners acknowledge the prominent role that exploratory 
factor analysis plays in exploring data structures. Data can be analyzed without precon-
ceived ideas of the number of factors or how these relate to the variables under consider-
ation. Whereas this approach is, as its name implies, exploratory in nature, the confirma-
tory factor analysis allows for testing hypothesized structures underlying a set of variables.

In a confirmatory factor analysis, the researcher needs to first specify the constructs 
and their associations with variables, which should be based on previous measurements 
or theory. Instead of allowing the procedure to determine the number of factors, as is 
done in an exploratory factor analysis, a confirmatory factor analysis tells us how well 
the actual data fit the pre-specified structure. Returning to our introductory example, we 
could, for example, assume that the construct satisfaction with the stadium can be mea-
sured by the three items x1 (condition of the stadium), x2 (appearance of the stadium), 
and x3 (interior design of the stadium). Likewise, we could hypothesize that satisfaction 
with the merchandise can be adequately measured using the items x4 and x5. In a confir-
matory factor analysis, we set up a theoretical model linking the items with the respective 

5 Note that this is only the case in PCA. When using factor analysis, the standard deviations are differ-
ent from one (DiStefano et al. 2009).
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. Table 8.3 Steps involved in carrying out a PCA or factor analysis in SPSS

Theory Action

Check assumptions and carry out preliminary analyses

Select variables that should be 
reduced to a set of underlying 
factors (PCA) or should be used to 
identify underlying dimensions 
(factor analysis)

► Analyze ► Dimension Reduction ► Factor. Enter the 
variables in the Variables box.

Are the variables interval or ratio 
scaled?

Determine the measurement level of your variables  
(see 7 Chap. 3). If ordinal variables are used, make sure that 
the scale steps are equidistant.

Is the sample size sufficiently 
large?

Check MacCallum et al.’s (1999) guidelines for minimum 
sample size requirements, dependent on the variables’ 
communality. For example, if all the communalities are 
above 0.60, small sample sizes of below 100 are adequate. 
With communalities around 0.50, sample sizes between 100 
and 200 are sufficient. Ensure that your dataset meets these 
thresholds after handling missing values.

Are the observations 
independent?

Determine whether the observations are dependent or 
independent (see 7 Chap. 3).

Are the variables sufficiently 
correlated?

► Analyze ► Dimension Reduction ► Factor ► Descriptives. 
Tick Coefficients, Significance levels, KMO and Bartlett’s 
test of sphericity, and Anti-image.
Check whether the KMO ≥ 0.50. Also consider the following 
measures:
–  Are the correlation coefficients different from zero and 

significant (indicated in the lower part of the correlation 
matrix under Sig. (1-tailed)?)

– Is the p-value of the Bartlett’s test (indicated by Sig.) ≤ 0.05?
To identify items that are too lowly correlated, check the 
variable-specific MSA values (indicated in the Anti-Image 
Correlation table). Are the MSA values ≥ 0.50?

Extract the factors

Choose the method of factor 
analysis

If the goal is to reduce the number of variables to a set of 
underlying factors (i.e., principal component analysis):
► Analyze ► Dimension Reduction ► Factor ► Extraction 
► Principal components.
If the goal is to identify underlying dimensions (i.e., factor 
analysis):
► Analyze ► Dimension Reduction ► Factor ► Extraction 
►Principal axis factoring
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Theory Action

Determine the number of factors

Determine the number of factors Kaiser criterion: Extract all factor with an eigenvalue greater 
than 1 (default).
Create a scree plot and select the number left of the 
distinctive break (elbow).
► Analyze ► Dimension Reduction ► Factor ► Extraction 
► Scree plot
Run parallel analysis: Download the syntax file Parallel 
analysis.sps from the book’s website (⤓Web Appendix 
→ Downloads) and open it in SPSS. Specify the number 
of observations under compute Ncases (line 10) and 
the number of variables under compute NVars (line 11). 
Go to ► Run ► All. Extract those factors whose original 
eigenvalues are greater than those indicated under Prcntyle.
Pre-specify the number of factors based on a priori 
information: ► Analyze ► Data Reduction ► Factor 
► Extraction ► Fixed number of factors: Factors to extract
Check the Cumulative % column in the Total Variance 
Explained column.

Interpret the factor solution

Rotate the factors Use the varimax procedure or, if necessary, the promax 
procedure with kappa set to 3: ► Analyze ► Dimension 
Reduction ► Factor ► Rotation.

Assign variables to factors and 
interpret the factors

Use the rotated solution to assign each variable to a certain 
factor based on the highest absolute loading. To facilitate 
interpretation, you may also assign a variable to a different 
factor but check that the loading lies at an acceptable level 
(0.50 if only few factors are extracted, 0.30 if many factors are 
extracted).
Find an umbrella term for clusters of items assigned to each 
factor.

Compute factor scores Save factor scores as new variables using the regression 
method: ► Analyze ► Dimension Reduction ► Factor 
► Scores ► Save as variables: Regression.

Evaluate the goodness-of-fit of the factor solution

Check the congruence of 
the initial and reproduced 
correlations

Create a reproduced correlation matrix: ► Analyze 
► Dimension Reduction ► Factor ► Descriptives 
► Reproduced. Is the proportion of residuals greater than 
0.05 ≤ 50 %?

Check how much of each 
variable’s variance is reproduced 
by means of factor extraction

Examine the communalities from the reproduced correlation 
matrix. Check if reproduced communalities (on the diagonal) 
are ≥ 0.50.

. Table 8.3 (Continued)
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construct (note that in confirmatory factor analysis, researchers generally use the term 
construct rather than factor). This process is also called operationalization (see 7 Chap. 3) 
and usually involves drawing a visual representation (called a path diagram) indicating 
the expected relationships.

. Figure 8.7 shows a path diagram—you will notice the similarity to the diagram in  
. Fig. 8.1. Ovals represent the constructs (e.g., Y1, satisfaction with the stadium) and boxes 
represent the items (x1 to x5). Other elements include the relationships between the con-
structs and respective items (the loadings l1 to l5), the error terms (e1 to e5) that capture the 
extent to which a construct does not explain a specific item, and the correlations between 
the constructs of interest (r12).

Having defined the individual constructs and developed the path diagram, we can 
estimate the model. The relationships between the constructs and items (the loadings l1 
to l5) and the item correlations (not shown in . Fig. 8.7) are of particular interest, as they 
indicate whether the construct has been reliably and validly measured.

Reliability analysis is an important element of a confirmatory factor analysis and essen-
tial when working with measurement scales. The preferred way to evaluate reliability is by 
taking two independent measurements (using the same subjects) and comparing these 
using correlations. This is also called test-retest reliability (see 7 Chap. 3). However, prac-
ticalities often prevent researchers from surveying their subjects a second time.

An alternative is to estimate the split-half reliability. In the split-half reliability, scale 
items are divided into halves and the scores of the halves are correlated to obtain an esti-
mate of reliability. Since all items should be consistent regarding what they indicate about 
the construct, the halves can be considered approximations of alternative forms of the 
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. Fig. 8.7 Path diagram (confirmatory factor analysis)
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Box 8.2 Things to consider when calculating Cronbach’s Alpha
When calculating Cronbach’s Alpha, ensure that all items are formulated in the same direction 
(positively or negatively worded). For example, in psychological measurement, it is common 
to use both negatively and positively worded items in a questionnaire. These need to be 
reversed prior to the reliability analysis. In SPSS, this can be achieved using the Recode option 
discussed in 7 Chap. 5. Furthermore, we have to be aware of there being multiple factors in our 
item set. Some multi-item scales comprise subsets of items that measure different facets of a 
multidimensional construct. For example, soccer fan satisfaction is a multidimensional construct 
that includes aspects such as satisfaction with the stadium, the merchandise (as described 
above), the team, and the coach. Each of these factors is measured using different sets of items, 
whose consistency has to be evaluated separately. Calculating one Cronbach’s Alpha over 99 
items would certainly be inappropriate. Cronbach’s Alpha is always calculated over the items 
belonging to one construct and not all items in the dataset!

same scale. Consequently, instead of looking at the scale’s test-retest reliability, research-
ers consider the scale’s equivalence, thus showing the extent to which two measures of the 
same general trait agree. We call this type of reliability the internal consistency reliability.

In the example of satisfaction with the stadium, we compute this scale’s split-half reli-
ability manually by, for example, splitting up the scale into x1 on the one side and x2 and 
x3 on the other. We then compute the sum of x2 and x3 (or calculate the items’ average) 
to form a total score and correlate this score with x1. A high correlation indicates that the 
two subsets of items measure related aspects of the same underlying construct and, thus, 
suggests a high degree of internal consistency. However, with many items, there are many 
different ways to split the variables into two groups.

Cronbach (1951) proposed calculating the average of all possible split-half coefficients 
resulting from different ways of splitting the scale items. The Cronbach’s Alpha coefficient 
has become by far the most popular measure of internal consistency. In the example above, 
this would comprise calculating the average of the correlations between (1) x1 and x2 + x3, 
(2) x2 and x1 + x3, as well as (3) x3 and x1 + x2. The Cronbach’s Alpha coefficient gener-
ally varies from 0 to 1, whereas a generally agreed lower limit for the coefficient is 0.70. 
However, in exploratory studies, a value of 0.60 is acceptable, while values of 0.80 or higher 
are regarded as satisfactory in the more advanced stages of research (Hair et al. 2011). In 
Box 8.2, we provide more advice on the use of Cronbach’s Alpha. We will illustrate a reli-
ability analysis using the standard SPSS module in the example at the end of this chapter.

8.5 Structural Equation Modeling

Whereas a confirmatory factor analysis involves testing if and how items relate to specific 
constructs, structural equation modeling involves the estimation of relations between these 
constructs. It has become one of the most important methods in social sciences, includ-
ing marketing research.

There are broadly two approaches to structural equation modeling: Covariance-based 
structural equation modeling (e.g., Jöreskog 1971) and partial least squares structural equa-
tion modeling (e.g., Wold 1982), simply referred to as CB-SEM and PLS-SEM. Both estima-
tion methods are based on the idea of an underlying model that allows the researcher to 
test relationships between multiple items and constructs.

8
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. Figure 8.8 shows an example path diagram with four constructs (represented by circles 
or ovals) and their respective items (represented by boxes).6 A path model incorporates 
two types of constructs: (1) exogenous constructs (here, satisfaction with the stadium (Y1) 
and satisfaction with the merchandise (Y2)) that do not depend on other constructs, and 
(2) endogenous constructs (here, overall satisfaction (Y3) and loyalty (Y4)) that depend on 
one or more exogenous (or other endogenous) constructs. The relations between the con-
structs (indicated with p) are called path coefficients, while the relations between the con-
structs and their respective items (indicated with l) are the item loadings. One can distin-
guish between the structural model that incorporates the relations between the constructs 
and the (exogenous and endogenous) measurement models that represent the relationships 
between the constructs and their related items. Items that measure constructs are labeled x.

In the model in . Fig. 8.8, we assume that the two exogenous constructs satisfaction with 
the stadium and satisfaction with the merchandise relate to the endogenous construct overall 
satisfaction and that overall satisfaction relates to loyalty. Depending on the research question, 
we could of course incorporate additional exogenous and endogenous constructs. Using 
empirical data, we could then test this model and, thus, evaluate the relationships between 
all the constructs and between each construct and its items. We could, for example, assess 
which of the two constructs, Y1 or Y2, relates more strongly to Y3. The result helps us when 
developing marketing plans to increase overall satisfaction and, ultimately, loyalty.

The evaluation of a path model analysis requires several steps that include the assess-
ment of both measurement models and the structural model. Diamantopoulos and Siguaw 
(2000) and Hair et al. (2019) provide thorough descriptions of the covariance-based struc-
tural equation modeling approach and its application. Hair et al. (2017a, 2018) provide a 
step-by-step introduction on how to set up and test path models using partial least squares 
structural equation modeling.

6 Note that we omitted the error terms for clarity.
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. Fig. 8.8 Path diagram (structural equation modeling)
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8.6 Example

In this example, we take a closer look at some of the items from the Oddjob Airways dataset 
(⤓ Web Appendix → Downloads). This dataset contains eight items that relate to the cus-
tomers’ experience when flying with Oddjob Airways. For each of the following items, the 
respondents had to rate their degree of agreement from 1 (“completely disagree”) to 100 
(“completely agree”). The variable names are included below:
 4 with Oddjob Airways you will arrive on time (s1),
 4 the entire journey with Oddjob Airways will occur as booked (s2),
 4 in case something does not work out as planned, Oddjob Airways will find a good 

solution (s3),
 4 the flight schedules of Oddjob Airways are reliable (s4),
 4 Oddjob Airways provides you with a very pleasant travel experience (s5),
 4 Oddjob Airways’s on board facilities are of high quality (s6),
 4 Oddjob Airways’s cabin seats are comfortable (s7), and
 4 Oddjob Airways offers a comfortable on-board experience (s8).

Our aim is to reduce the complexity of this item set by extracting several factors. Hence, 
we use these items to run a PCA.

8.6.1 Principal Component Analysis

8.6.1.1 Check Requirements and Conduct Preliminary Analyses
Before initiating the analysis, we need to check the assumptions of PCA and carry out 
preliminary analyses. We find that all eight variables are interval scaled from 1 (“very 
unsatisfied”) to 100 (“very satisfied”), therefore meeting the requirements in terms of the 
measurement scale.

Determining whether the variables are sufficiently correlated is part of the PCA. To 
initiate the analysis, go to ► Analyze ► Dimension Reduction ► Factor. In the dialog box 
that opens (. Fig. 8.9), enter all eight variables into the Variables box.

Next, click on Descriptives (. Fig. 8.10) and check the boxes next to Coefficients, Sig-
nificance levels, Anti-image, and KMO and Bartlett’s test of sphericity. Also make sure to 
select Reproduced, which requests the reproduced correlation matrix that we will use 
for assessing the goodness-of-fit of the factor solution. Finally, select Initial solution and 
Univariate descriptives in the upper part of the dialog box to display useful summary 
statistics of your data. All other options are of minor importance, so skip these and click 
Continue.

Now click on Extraction (. Fig. 8.11) and choose Principal components in the Method 
drop-down menu. Under Extract, you can determine the rule for factor extraction. The 
default option in SPSS is the Kaiser criterion as indicated by the option Eigenvalues greater 
than 1. In case you have prior information regarding the number of factors to extract, select 
Fixed number of factors and specify the corresponding number next to Factors to extract. 
Finally, under Display, make sure to select Unrotated factor solution and Scree plot. Click 
on Continue.

8



8283
8.6 · Example

Under Rotation, you can choose between several orthogonal and oblique rotation 
methods. Select the Varimax procedure and click on Continue. Finally, under Options, you 
can decide how missing values should be handled and specify the display format of the 
coefficients in the component matrix. Select Exclude cases listwise to eliminate observations 
that have missing values in any of the variables used in any of the analyses. Avoid replacing 
missing values with the mean as this will diminish the variation in the data, especially if 
there are many missing values in your dataset. You should always check the option Sorted 
by size under Coefficient Display Format, as this greatly increases the clarity of the display 
of results. If you wish, you can suppress low loadings of say less than 0.20 by selecting the 
option Suppress small coefficients. Particularly when analyzing many items, this option 
makes the output much easier to interpret. After having specified all the options, you can 
initiate the analysis by clicking on Continue, followed by OK.

. Fig. 8.9 Factor analysis dialog box

. Fig. 8.10 Descriptives option 
(factor analysis)
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The descriptive statistics in . Table 8.4 reveal that there are several observations with 
missing values in the dataset. However, with 921 valid observations, the sample size 
requirements are clearly met, even if the analysis produces very low communality values.

The correlation matrix in the upper part of . Table 8.5 indicates that there are several 
pairs of highly correlated variables. The values in the diagonal are all 1.000, which is logical, 
as this is the correlation between a variable and itself! The off-diagonal cells correspond 
to the pairwise correlations. For example, the pairwise correlation between s1 and s2 is 
.754. The corresponding value in the lower part of . Table 8.5 shows that all correlations 
are significant (.000). As an absolute minimum standard, we need at least one correlation 
in the off-diagonal cells to be significant and we clearly meet this minimum.The correla-
tion matrix in . Table 8.5 also shows that there are several pairs of highly correlated vari-
ables. For example, not only s1 is highly correlated with s2 (correlation = .754), but also s3 
is highly correlated with s1 (correlation = .622), just like s4 (correlation = .733). As these 
variables’ correlations with the remaining correlations is much lower, it is likely that these 
four variables form one factor. As you can see from the correlation matrix, we can already 
identify a likely factor structure.

The results in . Table 8.6 indicate a KMO value of .907, which is “marvelous”  
(. Table 8.2). Correspondingly, all MSA values shown on the diagonal in the lower part of 
the Anti-image Matrices output (. Table 8.7) are high. For example, s1 has an MSA value 
of .914. Not surprisingly the Bartlett’s test shown in . Table 8.6 is significant (Sig. = .000), 
which means that we can reject the null hypothesis of uncorrelated variables. Summariz-
ing these results, we conclude that the data are appropriate for PCA. Hence, we can con-
tinue with the interpretation of the PCA.

. Fig. 8.11 Extraction option (factor analysis)8
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. Table 8.4 Descriptive statistics

Descriptive Statistics

Mean Std. Deviation Analysis N

s1 60.36 26.300 921

s2 59.34 25.963 921

s3 55.83 25.150 921

s4 56.89 27.808 921

s5 56.48 22.269 921

s6 56.10 22.070 921

s7 51.60 24.568 921

s8 57.08 21.286 921

. Table 8.5 Correlation matrix

Correlation Matrix

s1 s2 s3 s4 s5 s6 s7 s8

Correlation s1 1.000 .754 .622 .733 .525 .500 .455 .542

s2 .754 1.000 .697 .771 .536 .493 .453 .535

s3 .622 .697 1.000 .648 .550 .492 .452 .553

s4 .733 .771 .648 1.000 .484 .436 .367 .487

s5 .525 .536 .550 .484 1.000 .818 .788 .811

s6 .500 .493 .492 .436 .818 1.000 .832 .842

s7 .455 .453 .452 .367 .788 .832 1.000 .780

s8 .542 .535 .553 .487 .811 .842 .780 1.000

Sig. 
(1-tailed)

s1 .000 .000 .000 .000 .000 .000 .000

s2 .000 .000 .000 .000 .000 .000 .000

s3 .000 .000 .000 .000 .000 .000 .000

s4 .000 .000 .000 .000 .000 .000 .000

s5 .000 .000 .000 .000 .000 .000 .000

s6 .000 .000 .000 .000 .000 .000 .000

s7 .000 .000 .000 .000 .000 .000 .000

s8 .000 .000 .000 .000 .000 .000 .000
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. Table 8.6 KMO and Bartlett’s test statistics

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .907

Bartlett's Test of Sphericity Approx. Chi-Square 6421.354

df 28

Sig. .000

8.6.1.2 Extract the Factors and Determine the Number of Factors
. Table 8.8 lists the eigenvalues associated with each factor before extraction, after 
extraction, and after rotation. In the columns labeled Initial Eigenvalues, we see the results 
before extraction. SPSS lists all eight factors (we know that there are potentially as many 
factors as there are variables) in this column. Most of these factors are only of minor 
importance. This is reflected in each factor’s eigenvalue, which is displayed in the table’s 
second column. Here, we see that the first factor has an eigenvalue of 5.249. As there are 
eight variables in our dataset, this factor accounts for 5.249/8.00 = 65.611 % of the overall 
variance, as indicated in the third column. It is quite remarkable that by using only one 
factor instead of eight variables, we can account for over 65 % of the overall variance! The 
second factor has an eigenvalue of 1.328 and, thus, still covers more variance than a single 
variable. In contrast, factors 3–8 only marginally account for the total variance explained, 
as their eigenvalues are considerably smaller than 1.

The second set of columns, labeled Extraction Sums of Squared Loadings, contains the 
factor solutions after extraction. Since we chose the Kaiser criterion as default option, SPSS 
extracts all factors with an eigenvalue greater than 1. As a consequence, SPSS extracts two 
factors, which jointly account for 82.215 % of the overall variance. The final part of the 
table, labeled Rotation Sums of Squared Loadings, displays the factors after rotation. The 
rotation typically changes the factors’ eigenvalues, but not the total variance explained. For 
example, before rotation, the second factor accounted for 16.604 % of the overall variance 
but after rotation, it accounts for 39.582 %.

Looking at the scree plot in . Fig. 8.12, we find an “elbow” in the line at three factors. 
As the number of factors that the scree plot suggests is one factor less than the elbow indi-
cates, we conclude that two factors are appropriate. This finding therefore supports the 
conclusion as the Kaiser criterion.

While the Kaiser criterion and the scree plot are helpful for determining the number 
of factors to extract, parallel analysis is a more robust criterion. Parallel analysis can only 
be run using SPSS syntax. To do so, go to the book’s ⤓ Web Appendix (→ Downloads) and 
download the syntax file Parallel analysis.sps (O’Connor 2000). Next, go to ► File ► Open 
►Syntax, locate the syntax file on your hard drive and open it. SPSS will now show the 
syntax editor as in . Fig. 8.13.

Under compute Ncases in line 10, you need to specify the number of observations, 
which is 921 in our case study. Similarly, under compute NVars (line 11), specify the number 
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. Fig. 8.13 Syntax editor
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. Fig. 8.14 Parallel analysis output

of variables used in the analysis, which is 8. Next, initiate the analysis by going to ► Run  
► All and SPSS will show an output similar to . Fig. 8.14.

The column labeled Prcntyle shows the 95th percentile for each factor’s eigenvalue 
resulting from the randomly generated data. Note that because of this random process, 
your numbers are going to look different. However, deviations typically occur at the third 
decimal place. We can now compare the original eigenvalues from . Table 8.8 with the ran-
domly generated eigenvalues from . Fig. 8.14. We learn that the first two factors produce 
eigenvalues larger than the randomly generated eigenvalues. Whereas the first original 
Eigenvalue is clearly higher (5.249; . Table 8.7) than the randomly generated one (1.185; 
. Fig. 8.14), the difference is much less pronounced for the second factor (1.328 vs. 1.122). 
The third factor’s original eigenvalue (.397) is clearly lower than its randomly generated 
counterpart (1.076). Hence, based on the parallel analysis results, we would also opt for 
a two-factor solution.

8.6.1.3 Interpret the Factor Solution
We continue with the interpretation of the factors. To do so, take a look at the Rotated Com-
ponent Matrix (. Table 8.9), which shows the item loadings after rotation. To interpret the 
factors, we first “assign” each variable to a certain factor based on its maximum absolute 
factor loading. That is, if the highest absolute loading is negative, higher values of a par-
ticular variable relate negatively to the assigned factor. After that, we should find a label 
for each factor that best describes the set of variables associated with that factor. Looking 
at . Table 8.9, we see that s1–s4 load highly on the second factor, whereas s5–s8 load on 
the first factor. For example, s1 has a .829 loading on the second factor, while its loading is 
much weaker on the first factor (.299). If you compare these results with the regular Com-
ponent Matrix, you will see that prior to rotation, all items load highly on the first factor 
and much weaker on the second.

Having identified which variables load highly on which factor in the rotated solution, 
we now need to identify labels for each factor. Looking at the variable labels, we learn 
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that the first set of variables (s1–s4) relate to reliability aspects of the journey and related 
processes, such as the booking. We could therefore label this factor (i.e., factor 2) reli-
ability. The second set of variables (s5–s8) relate to different aspects of the onboard facil-
ities and the travel experience. Hence, we could label this factor (i.e., factor 1) onboard 
experience. The labeling of factors is subjective and you could provide different labels.

8.6.1.4 Evaluate the Goodness-of-Fit of the Factor Solution
The last step involves assessing the analysis’s goodness-of-fit. To do so, we first look at the 
residuals (i.e., the differences between observed and reproduced correlations) in the repro-
duced correlation matrix (. Table 8.10). Examining the lower part of the table, we see that 
there are several residuals with absolute values larger than 0.05. However, we do not have 
to count every single value in the matrix (this could be quite exhausting if there are over 
100 variables in the dataset!). Instead, SPSS counts the proportion of residuals with high 
residuals, which is reported in the first part of the table. As we can see in point b beneath 
the table, 28.0 % of the residuals have absolute values greater than 0.05. As the percentage 
of increased residuals is well below 50 %, we can presume a good model fit.

This result is supported by the variables’ communalities and the total variance explained. 
All communalities in . Table 8.11 are very high, indicating that the factors reproduce the 
variables’ variance well. For example, with a value of .763, s1 has a communality value clearly 
above the 0.50 threshold, suggesting that the two factors account for 76.3 % of this variable’s 
variation. Finally, the two factors explain over 80 % of each variable’s variance (. Table 8.8). 
Jointly these results provide support for the solution’s goodness-of-fit.

>  In case the analysis indicates a poor goodness-of-fit, you should reconsider the 
set-up by eliminating items that have low communalities and MSA values.

. Table 8.9 Rotated component matrix

Rotated Component Matrixa

Component

1 2

s6 .903 .272

s7 .902 .208

s8 .856 .352

s5 .852 .347

s4 .198 .885

s2 .282 .871

s1 .299 .829

s3 .340 .759

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a Rotation converged in 3 iterations.
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8.6.1.5 Compute the Factor Scores
If you wish to use factor scores in subsequent analyses, you can rerun the analysis by going 
to ► Analyze ► Dimension Reduction ► Factor and selecting the Scores option. Since we 
recommend using the regression method, choose Save as variables and Regression. When 
clicking on Continue and OK, SPSS creates two new variables labeled FAC1_1 and FAC2_1, 
which include the scores of the two factors (. Fig. 8.15). These are z-standardized, meaning 
that the newly generated variables have mean values of 0 and standard deviations of 1. This 
entails the factor scores are estimated in units of standard deviations from their means. 
For example, the first observation is about 1.911 standard deviations below average on the 
onboard experience factor (i.e., factor 1) and about 0.914 standard deviations above the reli-
ability factor (i.e., factor 2). In contrast, the second observation is clearly above average in 
terms of onboard experience (1.684) and reliability (1.297). Using these variables as input 
we could, for example, evaluate whether male and female customers differ significantly 
with regard to their satisfaction with the airline’s reliability, and the onboard experience.

. Table 8.11 Communalities

Communalities

Initial Extraction

s1 1.000 .777

s2 1.000 .838

s3 1.000 .691

s4 1.000 .822

s5 1.000 .847

s6 1.000 .890

s7 1.000 .856

s8 1.000 .856

Extraction Method: Principal Component Analysis.

!  SPSS can only calculate factor scores if it has information on all the variables 
included in the analysis. If SPSS does not have all the information, it only shows a “.” 
(dot) in the data view window, indicating a system-missing value.

8.6.2 Reliability Analysis

To illustrate its usage, let’s carry out a reliability analysis of the first factor onboard experi-
ence by calculating Cronbach’s Alpha as a function of variables s5 to s8. To run the reliabil-
ity analysis, click on ► Analyze ► Scale ► Reliability Analysis. Next, enter variables s5, 
s6, s7, and s8 into the Items box (again, you may have to right-click on the items and select 
Display Variable Names to show the names instead of the variable labels) and type in the 
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. Fig. 8.15 SPSS data view window

scale’s name (e.g., satisfaction with the onboard experience). Make sure that Alpha is selected 
in the Model drop-down list (. Fig. 8.16).

Next, click on Statistics and choose Scale if item deleted (. Fig 8.17). You can also 
request several descriptive statistics for each item (including correlations) and the entire 
scale. However, for the sake of simplicity, we will work with the default settings. Click on 
Continue, followed by OK.

The results in . Table 8.12 show that the scale exhibits a high degree of internal consis-
tency reliability. With a value of .944, the Cronbach’s Alpha coefficient lies well above the 
commonly suggested threshold of .70. This result is not surprising, since we are simply 
testing a scale previously established using item correlations. Keep in mind that we should 

. Fig. 8.16 Reliability analysis dialog box

8
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. Table 8.13 Item-total statistics

Item-Total Statistics

Scale Mean if Item 
Deleted

Scale Variance if 
Item Deleted

Corrected Item- 
Total Correlation

Cronbach's Alpha 
if Item Deleted

s5 165.53 4084.951 .861 .928

s6 165.91 4045.200 .896 .917

s7 170.42 3859.797 .852 .933

s8 164.96 4215.151 .861 .929

. Table 8.12 Reliability statistics

Reliability Statistics

Cronbach's Alpha No of Items

.944 4

. Fig. 8.17 Statistics option 
(reliability analysis)

carry out a reliability analysis to test a scale using a different sample—this example is only 
for illustration purposes! The rightmost column of . Table 8.13 indicates what the Cron-
bach’s Alpha would be if we deleted the item indicated in that row. When we compare 
each of the values with the overall Cronbach’s Alpha value, we can see that any change in 
the scale’s set-up would reduce the Cronbach’s Alpha value. For example, by removing s5 
from the scale, the Cronbach’s Alpha of the new scale comprising only s6, s7, and s8 would 
be reduced to .928. In the column labeled Corrected Item-Total Correlation of . Table 8.13, 
SPSS indicates the correlation between the item and the scale that is composed of other 
items. This information is useful for determining whether reverse-coded items were also 
identified as such. Reverse-coded items should have a minus sign.
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8.7  Customer Satisfaction at Haver & Boecker (Case Study)

Case Study

© Haver & Boecker OHG

Haver & Boecker (http://
www.haverboecker.com) is 
one of the world’s leading 
and most renowned 
machine producers in the 
fields of mineral processing, 
as well as the storing, 
conveying, packing, and 
loading of bulk material. 
The family-owned group 
operates through its global 
network of facilities, with 
manufacturing units, among 
others, in Germany, the UK, 
Belgium, US, Canada, Brazil, 
China, and India.
The company’s relationships 
with its customers are 
usually long-term oriented 

and complex. Since the 
company’s philosophy 
is to help customers and 
business partners solve their 
challenges or problems, 
they often customize their 
products and services to 
meet the buyers’ needs. 
Therefore, the customer 
is not a passive buyer, but 
an active partner. Given 
this background, the 
customers’ satisfaction 
plays an important role in 
establishing, developing, 
and maintaining successful 
customer relationships.
Early on, the company’s 
management realized the 

importance of customer 
satisfaction and decided 
to commission a market 
research project in order to 
identify marketing activities 
that can positively contribute 
to the business’s overall 
success. Based on a thorough 
literature review, as well 
as interviews with experts, 
the company developed a 
short survey to explore their 
customers’ satisfaction with 
specific performance features 
and their overall satisfaction. 
All the items were measured 
on seven-point scales, with 
higher scores denoting 
higher levels of satisfaction. 

© Haver & Boecker OHG

8
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8.8 Review Questions

1. What is factor analysis? Try to explain what factor analysis is in your own words.
2. What is the difference between exploratory factor analysis and confirmatory factor 

analysis?
3. What is the difference between PCA and factor analysis?
4. Describe the terms communality, eigenvalue, and factor loading. How do these 

concepts relate to one another?
5. Describe the Kaiser criterion, the scree plot, and parallel analysis to determine 

the number of factors. What are there similarities and differences between these 
methods?

A standardized survey was 
mailed to customers in 
12 countries worldwide, 
which resulted in 281 fully 
completed questionnaires. 
The following items (names 
in parentheses) were listed in 
the survey:
 4 Reliability of the machines 

and systems. (s1)
 4 Life-time of the machines 

and systems. (s2)
 4 Functionality and 

user-friendliness 
operation of the machines 
and systems. (s3)

 4 Appearance of the 
machines and systems. (s4)

 4 Accuracy of the machines 
and systems. (s5)

 4 Timely availability of the 
after-sales service. (s6)

 4 Local availability of the 
after-sales service. (s7)

 4 Fast processing of 
complaints. (s8)

 4 Composition of 
quotations. (s9)

 4 Transparency of 
quotations. (s10)

 4 Fixed product prize 
for the machines and 
systems. (s11)

 4 Cost/performance ratio 
of the machines and 
systems. (s12)

 4 Overall, how satisfied are 
you with the supplier? 
(overall)

Your task is to analyze the 
dataset to provide the 
management of Haver 
& Boecker with advice 
for effective customer 
satisfaction management. The 
dataset is labeled Haver and 
Boecker.sav (⤓ Web Appendix 
→ Downloads).
1. Using regression analysis, 

locate those variables 
that best explain the 
customers’ overall 
satisfaction (overall). 
Evaluate the model fit 
and assess the impact 
of each variable on the 
dependent variable. 
Remember to consider 
collinearity diagnostics.

2. Determine the factors 
that characterize the 
respondents using factor 
analysis. Use items s1–s12 
for this. Run a PCA with 
varimax rotation to help 
interpretation. Consider 
the following aspects:
(a) Are all assumptions 

for carrying out a 
PCA met? Are the 

data are sufficiently 
correlated?

(b) How many factors 
would you extract? 
Base your decision on 
the Kaiser criterion, 
the scree plot, and 
parallel analysis. Do 
these three methods 
suggest the same 
number of factors?

(c) Find suitable labels for 
the extracted factors.

(d) Evaluate the 
factor solution’s 
goodness-of-fit.

3. Use the factor scores and 
regress the customers’ 
overall satisfaction 
(overall) on these. 
Evaluate the strength of 
the model and compare it 
with the initial regression. 
What should Haver & 
Boecker’s management 
do to increase their 
customers’ satisfaction?

4. Calculate the Cronbach’s 
Alpha over items s1–s5 
and interpret the results.

For further information on 
the dataset and the study, 
see Festge and Schwaiger 
(2007), as well as Sarstedt 
et al. (2009).
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6. What is the purpose of a varimax rotation? Does a rotation alter eigenvalues or 
factor loadings?

7. Re-run the Oddjob Airways case study by carrying out a factor analysis and compare 
the results to the PCA analysis described in 7 Sect. 8.6. Are there any differences?

8. What is reliability analysis and why is it important?
9. Explain the basic principle of structural equation modeling.
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